2019

ECONOMICS — HONOURS

Paper : CC-2 Full Marks : 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

- 1. Answer any ten questions:
 - (a) In each of the following, state the domain of the function:

1+1

(i)
$$y = \sqrt{25 - x^2}$$

(ii)
$$y = \frac{(x-2)}{(x-3)(x+4)}$$

(b) Evaluate $\int_{1}^{2} (e^x - 1)e^x dx$.

2

(c) Use Cramer's rule to solve the system of equations:

2

$$6x_1 + 5x_2 = 49$$

$$3x_1 + 4x_2 = 32$$

(d) Let $A = \begin{bmatrix} 4 & 1 \\ 9 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 0 \\ 7 & 1 \end{bmatrix}$ be two matrices. Show that the transpose of the sum of the matrices is the sum of the transposes of A and B.

(e) Let $y = f(x) = x^2 + x - 12$, x > 0 denote a Total function. Sketch the graph.

1+1

(f) From the following total cost TC function,

$$TC = Q^3 - 5Q^2 + 60Q$$

find the minimum average cost.

2

(g) Find the value of the following two person zero-sum game with the help of maximin-minimax principle:

Strategies >	Player II			
Player I		C	D	
	Λ	0	2	
	В	-2	5	

(h) Use Jocobian determinant to test the existence of functional dependence between the paired functions:

$$y_1 = 3x_1^2 + 2x_2^2$$
$$y_2 = 5x_1 + 1$$

(i) Is the following function strictly convex?

 $y = 8 - 5x + x^2$

- (j) Let $A = \{H, T\}$ and $B = \{1, 2, 3\}$. Show that the Cartesian Product of these two sets is not commutative.
- (k) Examine for which of the following equations, y is a function of x:

(i) x = 5, $\forall y$; (ii) y = 10, $\forall x$.

- (I) Find $\lim_{x \to 0} \frac{3^x 1}{x}$.
- (m) Examine whether the following function is continuous at x = 4:

 $f(x) = \begin{cases} 1-x, & x \le 4 \\ 2x-11, & x > 4 \end{cases}$

(n) Find the marginal and average functions for the following total function:

Total function : $R = 10q - q^2$

(o) What is the rank of the matrix $A = \begin{pmatrix} 1 & 5 & 1 \\ 0 & 3 & 9 \\ -1 & 0 & 0 \end{pmatrix}$?

Group - B

Answer any three questions.

2. Marginal cost is given by $MC = 25 + 30Q - 9Q^2$. Fixed cost is 55. Find the (a) total cost, (b) average cost, and (c) variable cost functions.

2+2+1

2

2

- 3. In a class of 120 students numbered 1 to 120, all even numbered students opt for Mathematics, those whose numbers are divisible by 5 opt for Statistics and those whose numbers are divisible by 7 opt for Economics. How many students opt for none of the three subjects?

 5
- 4. It is given that for $A = \begin{bmatrix} 1 & 0 & c \\ 0 & a & -b \\ -1/a & x & x^2 \end{bmatrix}$ a, b and c are constants and $a \neq 0$.

Find the values of x for which A^{-1} (inverse of A) exists.

- 5. (a) In game theory, what is
 - (i) a two-person zero-sum game,
 - (ii) saddle point?
 - (b) Hence find the saddle point of the following two person zero-sum game:

$$A = \begin{bmatrix} 4 & 1 & -3 \\ 3 & 2 & 5 \\ 0 & 1 & 6 \end{bmatrix} \tag{2+2+1}$$

6. Considering a matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ explain how, in general, you can find the Eigen values.

Group - C

Answer any three questions.

7. Consider the following Leontief System where the input matrix and final demand vector are given by :

$$A = \begin{bmatrix} 0.05 & 0.25 & 0.34 \\ 0.33 & 0.1 & 0.12 \\ 0.19 & 0.38 & 0 \end{bmatrix}, \quad d = \begin{bmatrix} 1800 \\ 200 \\ 900 \end{bmatrix}$$

- (a) Check whether the system satisfies the Hawkins-Simon Conditions.
- (b) Find the value of the three outputs.

5+5

8. (a) Find the point elasticity of demand, given the demand curve

$$Q = \frac{k}{p^n}; \ k > 0, \ n > 0.$$

If n = 1, what is the value of point elasticity of demand and what is the shape of the demand curve?

(b) Prove that if a function is differentiable at some point, then it must be continuous at that point; but the converse is not true. $(2+1\frac{1}{2}+1\frac{1}{2})+5$

Please Turn Over

9. For the following function,

$$y = f(x) = x^3 - 18x^2 + 96x - 80$$

- (a) find the critical values,
- (b) test for concavity to determine relative maxima or minima,
- (c) check for inflection points, and
- (d) evaluate the function at the critical values and inflection points.

3+2+2+3

10. (a) Determine the values of the constants a, b, c such that the function

$$f(x, y) = ax^2y + bxy + 2xy^2 + c$$

has a local minimum at the point $\left(\frac{2}{3}, \frac{1}{3}\right)$ with local minimum value $\left(-\frac{1}{9}\right)$.

(b) Comment for quasiconcavity or quasiconvexity of the following function:

5+5

$$y = ax^2 + b$$
, $(a < o, b > o)$.

11. (a) Is the following function differentiable at x = 2?

$$y = f(x) = |x - 2| + 1$$

(b) Using Dominance strategy, find the saddle point of the following game:

5+5

Strategies	Player II						
		E	F	G	Н	I	
Player I	A	2	4	3	8	5	
	В	4	5	2	6	7	
	C	7	6	8	7	6	
	D	5	1	7	4	2	