



2024

## MATHEMATICS — MINOR

Paper : MN-1

(Calculus, Geometry and Vector Analysis)

Full Marks : 75

*Candidates are required to give their answers in their own words  
as far as practicable.*

প্রাত্তিনিধিত্ব সংখ্যাগুলি পূর্ণমান নির্দেশক।

বিভাগ - ক

[Calculus]

(Marks : 20)

১। যে-কোনো চারটি প্রশ্নের উত্তর দাও :

২×৮

(ক)  $f'(0)$ -এর মান নির্ণয় করো যদি অস্তিত্ব থাকে, যেখানে  $f(x) = \begin{cases} 3 + 2x, & -\frac{3}{2} < x \leq 0 \\ 3 - 2x, & 0 \leq x < \frac{3}{2} \end{cases}$ .

(খ) যদি  $y = \tan^{-1}x$  হয়, তাহলে দেখাও যে,  $(1 + x^2)y_{n+1} + 2nxy_n + n(n-1)y_{n-1} = 0$ .

(গ) মান নির্ণয় করো :  $\lim_{x \rightarrow 1} \left[ \frac{x}{x-1} - \frac{1}{\log_e x} \right]$

(ঘ)  $I_n = \int_0^{\frac{\pi}{2}} \sin^n \theta \, d\theta = \frac{n-1}{n} I_{n-2}$ -এর reduction formula ব্যবহার করে  $\int_0^1 \frac{x^4}{\sqrt{1-x^2}} \, dx$ -এর মান নির্ণয় করো।

(ঙ)  $x^2 + y^2 = 25$  বৃত্তটির পরিধি নির্ণয় করো।

(চ)  $y = x^3$  বক্ররেখা এবং  $y = 2x$  রেখা দ্বারা পরিবেষ্টিত অঞ্চলের ক্ষেত্রফল নির্ণয় করো।

(ছ)  $y = \sqrt{x}$  বক্ররেখা এবং  $x = 1, x = 4$  রেখা দ্বারা পরিবেষ্টিত ক্ষেত্রটিকে  $x$ -অক্ষের চারপাশে ঘূর্ণ সৃষ্টি পৃষ্ঠালের ক্ষেত্রফল নির্ণয় করো।

Please Turn Over

২। যে-কোনো তিনটি প্রশ্নের উত্তর দাও :

(ক) যদি  $y = (\sin^{-1}x)^2$  হয়, দেখাও যে  $(1 - x^2)y_{n+2} - (2n + 1)xy_{n+1} - n^2y_n = 0$ . 8(খ)  $\lim_{x \rightarrow +\infty} \left( \frac{x^3}{x^2 - x + 1} - \frac{x^3}{x^2 + x - 1} \right)$ -এর মান নির্ণয় করো। 8(গ)  $\int_0^{\pi/2} \cos^n x \, dx$ -এর reduction সূত্র নির্ণয় করো। এর সাহায্যে  $\int_0^{\pi/2} \cos^4 x \sin^2 x \, dx$ -এর মান নির্ণয় করো।

২+২

(ঘ) নিম্নলিখিত সমীকরণটির প্রকৃত বক্র দৈর্ঘ্য নির্ণয় করো :

$$x = a \cos^3 \phi, y = a \sin^3 \phi.$$
 8

(ঙ)  $x$ -অক্ষকে অক্ষ করে  $y = 5x - x^2$ ,  $y-axis$  এবং  $x = 5$  ক্ষেত্রটির ঘূর্ণন সৃষ্টি solid-এর আয়তন নির্ণয় করো। 8(চ)  $\int x^n e^{ax} \, dx$ -এর রিডাকশন ফর্মুলা বার করো এবং এর সাহায্যে  $\int x^3 e^{2x} \, dx$ -এর মান নির্ণয় করো। 8

## বিভাগ - খ

## [Geometry]

(Marks : 35)

৩। যে-কোনো দুটি প্রশ্নের উত্তর দাও : ২১/২×২

(ক) এমনভাবে অক্ষদ্বয়কে সমান্তরাল স্থানান্তর করো যাতে  $x^2 + y^2 - 4x + 8y - 17 = 0$  সমীকরণটির পরিবর্তিত রূপটি  $x'^2 + y'^2 = 37$  হয়।(খ)  $x^2 + y^2 - 6x + 4y = 12$  বৃত্তটির স্পর্শকের সমীকরণ নির্ণয় করো, যেটি  $4x + 3y + 5 = 0$  সরলরেখার সাথে সমান্তরাল হবে।(গ)  $r = 8 \sin(\theta - \pi/3)$  বৃত্তটির কেন্দ্রের মেরুস্থানক এবং ব্যাসার্ধ নির্ণয় করো।(ঘ) 'a' এর কোনো মানের জন্য  $x + y + z = \sqrt{3}a$  তলটি  $x^2 + y^2 + z^2 - 2x - 2y - 2z - 6 = 0$  গোলকটির স্পর্শক হবে।

৪। যে-কোনো পাঁচটি প্রশ্নের উত্তর দাও :

(ক)  $4x^2 - 4xy + y^2 - 8x - 6y + 5 = 0$  সমীকরণটিকে তার canonical রূপে পরিবর্তিত করো এবং সেখান থেকে conic-টির প্রকৃতি নির্ণয় করো। ৬(খ) একটি সরলরেখা  $x^2 + y^2 = 2a^2$  এবং  $y^2 = 8ax$  উভয়কে স্পর্শ করে। উহার সমীকরণটি নির্ণয় করো। ৬

(গ) যদি একটি conic-এর দুটি পরস্পর লম্ব focal chord দ্বয়  $PSP'$  এবং  $QSQ'$  হয়, যে conic-টির নাভি হল  $S$ .

প্রমাণ করো  $\left( \frac{1}{SP \cdot SP'} + \frac{1}{SQ \cdot SQ'} \right)$  ধ্রুবক।

৬

(ঘ) একটি গোলকের সমীকরণ নির্ণয় করো যেটি  $(1, 0, 0), (0, 1, 0), (0, 0, 1)$  বিন্দুগামী এবং  $2x + 2y - z = 15$  তলটিকে স্পর্শ করে।

৬

(ঙ) একটি লম্ববৃত্তীয় চোঙের সমীকরণ নির্ণয় করো যেটির ব্যাসার্ধ 5 একক এবং যার অক্ষ  $(1, 2, 3)$  বিন্দুগামী এবং

$$\frac{x-4}{2} = \frac{y-3}{-1} = \frac{z-2}{2} \text{ সরলরেখার সমান্তরাল।}$$

৬

(চ)  $2x^2 + 5y^2 + 3z^2 - 4x + 20y - 6z - 5 = 0$  surface-এর প্রকৃতি নির্ণয় করো। এবং surface-টির কেন্দ্রের স্থানাঙ্ক এবং মুখ্যতলের (Principal Plane) সমীকরণ নির্ণয় করো।

৩+১+২

(ছ) দেখাও যে তিনটি অক্ষ এবং  $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$  এবং  $\frac{x}{3} = \frac{y}{2} = \frac{z}{-1}$  সরলরেখা দুটি দিয়ে তৈরি শঙ্কুর সমীকরণটি হবে  $3yz + 10zx + 6xy = 0$ .

৬

(জ)  $x^2 - y^2 = 2z$  এই hyperbolic paraboloid-এর generating সরলরেখাগুলির সমীকরণ নির্ণয় করো, যেটি  $(5, 3, 8)$  বিন্দুগামী।

৬

(ঝ) একটি নলের সমীকরণ নির্ণয় করো যার generator গুলি  $\frac{x}{-1} = \frac{y}{2} = \frac{z}{3}$  সরলরেখার সমান্তরাল এবং guiding curve  $x^2 + y^2 = 9, z = 1$ .

৬

### বিভাগ - গ

#### [ Vector Analysis ]

(Marks : 20)

৫। যে-কোনো চারটি প্রশ্নের উত্তর দাওঃ

২×৪

(ক)  $\lambda$ -এর সকল সম্ভাব্য মান নির্ণয় করো, যার জন্য ভেস্টের  $\vec{\alpha} = \lambda(2\hat{i} - 2\hat{j} + 6\hat{k})$  একটি unit ভেস্টের হবে।

(খ) যদি  $|\vec{\alpha}| = 4, |\vec{\beta}| = 5$  এবং  $\vec{\alpha} \cdot \vec{\beta} = 0$  হয়,  $|\vec{\alpha} \times \vec{\beta}|$ -এর মান নির্ণয় করো।

(গ)  $(1, 1, 0), (1, 0, 1), (0, 1, 1)$  এবং  $(1, 1, 1)$  বিন্দুগামী ট্রিওহেড্রনের আয়তন ভেস্টের পদ্ধতিতে নির্ণয় করো।

(ঘ)  $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}, \vec{b} = \hat{i} + 2\hat{j} - 3\hat{k}$  এবং  $\vec{c} = 3\hat{i} + p\hat{j} + 5\hat{k}$  ভেস্টেরগুলি একতলীয় হলে,  $p$ -ধ্রুবকটির মান নির্ণয় করো।

Please Turn Over

(গ)  $4\hat{i} + \hat{j} - 3\hat{k}$  এবং  $3\hat{i} + \hat{j} - \hat{k}$  বল দুটি একটি বস্তুর উপর প্রয়োগের ফলে বস্তুটি  $(1, 2, 3)$  বিন্দু থেকে  $(5, 4, -1)$  বিন্দুতে স্থানান্তরিত হল। কার্য (work done) নির্ণয় করো।

(চ)  $5\hat{i} + 2\hat{j} - 3\hat{k}$  বলটি  $(1, -2, 2)$  বিন্দুটির ওপর প্রয়োগ করা হলে মূল বিন্দুকে কেন্দ্র করে বলটির moment নির্ণয় করো।

(ছ) যদি  $\vec{F} = 5t^2\hat{i} + t\hat{j} - t^3\hat{k}$  এবং  $\vec{G} = \sin t\hat{i} - \cos t\hat{j}$  হয়, তাহলে  $\frac{d}{dt}(\vec{F} \times \vec{G})$ -এর মান নির্ণয় করো।

৬। যে-কোনো তিনটি প্রশ্নের উভয় দাও :

(ক) যদি  $\vec{a} + \vec{b} + \vec{c} = \vec{0}$  হয়, প্রমাণ করো  $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$ . 8

(খ) ভেষ্টের পদ্ধতিতে দেখাও যে একটি rhombus-এর কর্ণদ্বয় পরস্পর লম্ব হবে। 8

(গ) প্রমাণ করো যে,  $\vec{a}(t)$ -এর পরম মান ধ্রুবক হওয়ার necessary and sufficient শর্ত হল  $\vec{a} \cdot \frac{d\vec{a}}{dt} = 0$ . 8

(ঘ) (অ) যদি  $\vec{r} = (\cos nt)\hat{i} + (\sin nt)\hat{j}$ , যেখানে  $n$  একটি ধ্রুবক এবং  $t$  একটি চলরাশি, তাহলে দেখাও যে,

$$\vec{r} \times \frac{d\vec{r}}{dt} = n\hat{k}.$$

(আ) যদি  $\vec{u} = t^2\hat{i} - t\hat{j} + (2t + 1)\hat{k}$  এবং  $\vec{v} = (2t - 3)\hat{i} + \hat{j} - t\hat{k}$  হয়, তাহলে দেখাও যে  $t = 1$  বিন্দুতে,

$$\frac{d}{dt}(\vec{u} \times \vec{v}) = 7\hat{j} + 3\hat{k}. \quad 2+2$$

(গ)  $(\hat{i} - 2\hat{j} + \hat{k})$  এবং  $(3\hat{k} - 2\hat{j})$  বিন্দু দুটি দিয়ে একটি সরলরেখার ভেষ্টের সমীকরণ নির্ণয় করো। 8

(চ)  $\int_2^3 \left( \vec{r} \times \frac{d^2 \vec{r}(t)}{dt^2} \right) dt$ -এর মান নির্ণয় করো, যেখানে  $\vec{r}(t) = t^3\hat{i} + 2t^2\hat{j} + 3t\hat{k}$ . 8

## [ English Version ]

The figures in the margin indicate full marks.

## Group - A

## [ Calculus ]

(Marks : 20)

1. Answer **any four** questions :

2×4

(a) Find  $f'(0)$ , if it exists, for  $f(x) = \begin{cases} 3 + 2x, & -\frac{3}{2} < x \leq 0 \\ 3 - 2x, & 0 \leq x < \frac{3}{2} \end{cases}$

(b) If  $y = \tan^{-1}x$ , then show that,  $(1 + x^2)y_{n+1} + 2nxy_n + n(n-1)y_{n-1} = 0$ .

(c) Evaluate the limit :  $\lim_{x \rightarrow 1} \left[ \frac{x}{x-1} - \frac{1}{\log_e x} \right]$

(d) Using the reduction formula for  $I_n = \int_0^{\frac{\pi}{2}} \sin^n \theta d\theta = \frac{n-1}{n} I_{n-2}$ , evaluate  $\int_0^1 \frac{x^4}{\sqrt{1-x^2}} dx$ .

(e) Find the length of the circumference of the circle  $x^2 + y^2 = 25$ .

(f) Find the area of the region bounded by the curve  $y = x^3$  and the line  $y = 2x$ .

(g) Find the surface area generated by revolving the region enclosed by the curve  $y = \sqrt{x}$  and the lines  $x = 1$ ,  $x = 4$  about  $x$ -axis.

2. Answer **any three** questions :

(a) If  $y = (\sin^{-1}x)^2$ , then show that  $(1 - x^2)y_{n+2} - (2n + 1)xy_{n+1} - n^2y_n = 0$ .

4

(b) Evaluate  $\lim_{x \rightarrow +\infty} \left( \frac{x^3}{x^2 - x + 1} - \frac{x^3}{x^2 + x - 1} \right)$ .

4

(c) Find the reduction formula for  $\int_0^{\frac{\pi}{2}} \cos^n x dx$ , where  $n$  is a positive integer,

hence, find the value of  $\int_0^{\frac{\pi}{2}} \cos^4 x \sin^2 x dx$ .

2+2

Please Turn Over

(d) Find the exact arc length of the curve given by the equations :

$$x = a \cos^3 \phi, y = a \sin^3 \phi.$$

4

(e) Find the volume of the solid of revolution generated by the region enclosed by  $y = 5x - x^2$ ,  $y$ -axis and  $x = 5$  about  $x$ -axis.

4

(f) Derive the reduction formula for  $\int x^n e^{ax} dx$  and hence, evaluate  $\int x^3 e^{2x} dx$ .

4

**Group - B**

**[ Geometry ]**

**(Marks : 35)**

3. Answer **any two** questions :

2½×2

(a) Obtain the parallel displacement at the axes by which the equation  $x^2 + y^2 - 4x + 8y - 17 = 0$  is transformed to  $x'^2 + y'^2 = 37$ .

(b) Find the equations of the tangents to the circle  $x^2 + y^2 - 6x + 4y = 12$  which are parallel to the line  $4x + 3y + 5 = 0$ .

(c) Find the polar coordinates of the centre and radius of the circle :  $r = 8 \sin(\theta - \pi/3)$ .

(d) Find the value of 'a' for which the plane  $x + y + z = \sqrt{3}a$  touches the sphere

$$x^2 + y^2 + z^2 - 2x - 2y - 2z - 6 = 0.$$

4. Answer **any five** questions :

(a) Reduce the equation  $4x^2 - 4xy + y^2 - 8x - 6y + 5 = 0$  to its canonical form and hence, determine the nature of the conic.

6

(b) A straight line touches both  $x^2 + y^2 = 2a^2$  and  $y^2 = 8ax$ . Find its equation.

6

(c) If  $PSP'$  and  $QSQ'$  be two perpendicular focal chords of a conic with focus  $S$ , then prove that

$$\left( \frac{1}{SP \cdot SP'} + \frac{1}{SQ \cdot SQ'} \right) \text{ is constant.}$$

6

(d) Find the equation of the sphere which passes through the points  $(1, 0, 0)$ ,  $(0, 1, 0)$ ,  $(0, 0, 1)$  and which touches the plane  $2x + 2y - z = 15$ .

6

(e) The radius of a right circular cylinder is 5, axis passes through the point  $(1, 2, 3)$  and is parallel to the straight line  $\frac{x-4}{2} = \frac{y-3}{-1} = \frac{z-2}{2}$ ; find the equation of the cylinder.

6

(f) Find the nature of the surface represented by the equation

$$2x^2 + 5y^2 + 3z^2 - 4x + 20y - 6z - 5 = 0.$$

Find also, the coordinates of the centre and equations of principal planes.

3+1+2

(g) Show that the equation of the cone which passes through the coordinate axes and the straight lines

$$\frac{x}{1} = \frac{y}{-2} = \frac{z}{3} \text{ and } \frac{x}{3} = \frac{y}{2} = \frac{z}{-1} \text{ is } 3yz + 10zx + 6xy = 0.$$

6

(h) Find the equations at the generators of the hyperboloid  $x^2 - y^2 = 2z$  which passes through the point (5, 3, 8).

6

(i) Find the equation of the cylinder whose generators are parallel to the straight line  $\frac{x}{-1} = \frac{y}{2} = \frac{z}{3}$  and whose guiding curve is  $x^2 + y^2 = 9, z = 1$ .

6

### Group - C

#### [ Vector Analysis ]

(Marks : 20)

5. Answer *any four* questions :

2×4

(a) Determine all possible values of  $\lambda$  for which the vector  $\vec{\alpha} = \lambda(2\hat{i} - 2\hat{j} + 6\hat{k})$  is a unit vector.

(b) If  $|\vec{\alpha}| = 4$ ,  $|\vec{\beta}| = 5$  and  $\vec{\alpha} \cdot \vec{\beta} = 0$ , find  $|\vec{\alpha} \times \vec{\beta}|$ .

(c) Find, by vector method, the volume of the tetrahedron whose vertices are (1, 1, 0), (1, 0, 1), (0, 1, 1) and (1, 1, 1).

(d) Find the value of  $p$  so that the vectors  $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$ ,  $\vec{b} = \hat{i} + 2\hat{j} - 3\hat{k}$  and  $\vec{c} = 3\hat{i} + p\hat{j} + 5\hat{k}$  are coplanar.

(e) A particle being acted on by constant forces  $4\hat{i} + \hat{j} - 3\hat{k}$  and  $3\hat{i} + \hat{j} - \hat{k}$  is displaced from the point (1, 2, 3) to the point (5, 4, -1). Find the total work done.

(f) A force  $5\hat{i} + 2\hat{j} - 3\hat{k}$  is applied at the point (1, -2, 2). Find the value of the moment of the force about the origin.

(g) If  $\vec{F} = 5t^2\hat{i} + t\hat{j} - t^3\hat{k}$  and  $\vec{G} = \sin t\hat{i} - \cos t\hat{j}$ , find  $\frac{d}{dt}(\vec{F} \times \vec{G})$ .

6. Answer *any three* questions :

(a) If  $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ , then prove that  $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$ .

4

(b) Prove by vector method that the diagonals of a rhombus are perpendicular to each other.

4

Please Turn Over

(c) Prove that a necessary and sufficient condition for the vector function  $\vec{a}(t)$  to have constant magnitude is  $\vec{a} \cdot \frac{d\vec{a}}{dt} = 0$ . 4

(d) (i) If  $\vec{r} = (\cos nt)\hat{i} + (\sin nt)\hat{j}$ , where  $n$  is a constant and  $t$  varies,

then show that  $\vec{r} \times \frac{d\vec{r}}{dt} = n\hat{k}$ .

(ii) If  $\vec{u} = t^2\hat{i} - t\hat{j} + (2t + 1)\hat{k}$  and  $\vec{v} = (2t - 3)\hat{i} + \hat{j} - t\hat{k}$ , then

show that  $\frac{d}{dt} (\vec{u} \times \vec{v}) = 7\hat{j} + 3\hat{k}$  at  $t = 1$ . 2+2

(e) Derive the vector equation of the straight line passing through the points  $(\hat{i} - 2\hat{j} + \hat{k})$  and  $(3\hat{k} - 2\hat{j})$ . 4

(f) Evaluate  $\int_2^3 \left( \vec{r} \times \frac{d^2 \vec{r}(t)}{dt^2} \right) dt$ , where  $\vec{r}(t) = t^3\hat{i} + 2t^2\hat{j} + 3t\hat{k}$ . 4

---

(a) Find the equation of the plane which passes through the points  $(1, 0, 0)$ ,  $(0, 1, 0)$  and  $(0, 0, 1)$  and which touches the sphere  $A$  at the point  $(1, 1, 1)$ .

(b) The radius of a right circular cylinder is 1, axis parallel to the  $z$ -axis and perpendicular to the straight line  $x = 2t + 1$ ,  $y = 3t - 2$ ,  $z = 5t + 3$ . Find the volume of the cylinder.

(c) Find the surface area of the surface  $x^2 + y^2 + z^2 = 2$  in the first octant. 4

Find also, the coordinates of the centre and equation of principal plane.