

LORETO COLLEGE
TIME PLAN 2025-2026

Name of the teacher: Dr. Kaustuva Banerjee
Initials: K.B

Teaching Objective:

- Comprehend the importance of map scale.
- Differentiate between types of map projections.

1st Semester Bridge Course Topic-wise Time Plan

Topics	Hours allotted	Topics (as per curriculum)	Teaching method	Learning outcome (output)	Assessment
Map Scales and concepts of Projections	4	1. Introduction to Map Scale. 2. Different types of Map Scale. 3. Concept of Map projection. 4. Different type of Map Projections. 5. Importance of Map scales and Map Projections	1. Lecture 2. Demonstration 3. Peer Learning	1. Explain the concept of Map Scale. 2. Convert the different ways of representation of Map scale. 3. Analyze the concept and importance of Map projections. 4. Differentiate between types of Map projections.	1. Written test (short answers-type) through LMS

LORETO COLLEGE
TIME PLAN 2025-2026

Name of the teacher: DEBASREE SINHA

Initials: D.S

Teaching Objective:

- Provide an understanding of fundamental methods of data collection during fieldwork.
- Impart knowledge regarding the compilation, record, organization, and display of that data.
- Develop basic skills of methods used in physical geography.

1st Semester Honours Course Topic-wise Time Plan

Topics	Hours allotted	Topics (as per curriculum)	Teaching method	Learning outcome (output)	Assessment
Bridge Course: Introduction to Research Methodology and Statistical Techniques	4	1. Introduction to Research Methodology: meaning of research 2. Steps involved in Research 3. Types of Data: qualitative and quantitative 4. Analysis of Qualitative and Quantitative: brief overview 5. Descriptive and Inferential Statistics: definition and difference 6. Basic Concepts: data, array, variables, class, frequency, measurement scales (nominal, ordinal, interval, and ratio)	1. Lecture 2. Discussion 3. Problem-solving	1. Development of a clear understanding of what constitutes research 2. Creation of a fundamental idea about the significance of data in research 3. Appreciation of the utility of statistical techniques in organizing data	1. Written test (MCQ and short answers-type)

LORETO COLLEGE
TIME PLAN 2025-2026

Name of the teacher: Dr. Sushma Sahai

Initials: SWS

Teaching Objective:

- To understand the significance of Coral reef as an ecosystem
- Comprehend the factors influencing Coral reef formation
- To foster an understanding of the ecological importance and threats faced by coral reefs
- To provide guidance beyond prescribed syllabus

BRIDGE COURSE

Topics	Hours allotted	Topics (as per Module)	Teaching method	Learning outcome (output)	Assessment
1.	2	Introduction to Coral Reefs: I. Factors influencing coral reef formation II. Types of reefs (fringing, barrier, atolls)	<ul style="list-style-type: none"> • Technology based learning • Blended learning • Discussion / Interactive method 	<ul style="list-style-type: none"> • Comprehend the formation and types of coral reefs • Gain insight into the vital ecological role of coral reefs 	<ul style="list-style-type: none"> • Quiz with MCQ
2	2	Climate Change Impacts on Coral Reefs: III. Ocean warming and coral bleaching IV. Sea level rise and its impact on reef ecosystems	<ul style="list-style-type: none"> • Technology based learning • Learning through problem solving 	<ul style="list-style-type: none"> • Critically assess how climate change and human activity affect reef health • Develop critical thinking skills, deepen their understanding of coral reef ecology and conservation • Cultivate a sense of responsibility toward protecting these vital marine ecosystems 	<ul style="list-style-type: none"> • Case study

**LORETO COLLEGE
TIME PLAN 2025**

Name of the teacher: Mrs S.Sethwala

Initials: S.S

Teaching Objectives:

- to help students bridge the gap in the understanding of physical processes and the linkages
- to enable students to understand the concept of system and its application in Geography

BRIDGE COURSE

<i>Topics</i>	<i>Hours allotted</i>	<i>Topics (as per curriculum)</i>	<i>Teaching method</i>	<i>Learning outcome (output)</i>	<i>Assessment</i>
1 Systems approach	3	<ol style="list-style-type: none"> 1. Systems approach in Geography - open,closed, cascading, morphological, process -response, process - form 2. Significance of systems approach in geographical studies 	lecture method problem solving method use of PPTs	<ul style="list-style-type: none"> ● able to distinguish between different types of systems ● able to identify the systems in geographical studies 	<ul style="list-style-type: none"> ● MCQ /Objective ● Worksheet ● exams

LORETO COLLEGE
TIME PLAN 2025

Name of the teacher: Dr. Ambika Roy Bardhan

Initials: A.R.

Teaching Objective:

- Explain the concept of map and scale.
- Differentiate between large and small scale map with examples.
- Differentiate between old and open series map based on numbering system, datum and projection used, scales at various spatial levels, latitudinal and longitudinal extension.

UG Semester I (Bridge Course) Topic-wise Time Plan

Topics	Hours allotted	Topics (as per curriculum)	Teaching method	Learning outcome (output)	Assessment
Concept of Maps: Small and Large Scale Maps	45minutes	Topographical Maps: From old series to open Series	Group Learning and Teaching	<ul style="list-style-type: none"> . Define topographical maps. . Differentiate between small scale and large scale maps. . List the evolution of topographical maps chronologically from old series to open series maps. 	Quiz and MCQ
Old series maps and opens series maps	45 minutes	Topographical Maps: From old series to open Series	Group Learning and Teaching	<ul style="list-style-type: none"> . Differentiate between old series and open series maps with respect to numbering system, datum and projection used, map 	Quiz with MCQ

				scale, latitudinal and longitudinal extensions etc. . Identify maps based on scales at various spatial levels. . Explain the importance of Open Series Maps compared to other types of topographical maps.	
--	--	--	--	---	--

LORETO COLLEGE
TIME PLAN 2025

Name of the teacher: Dr. Suman Chatterjee

Initials: SCH

Teaching Objective:

- Students will understand the significance of logarithms as mathematical operators and their role in scaling and measurement.
- Students will be able to relate natural and geographical processes to the concept of the natural logarithm and Euler's number.
- Students will learn to analyze and manage geographical data exhibiting exponential growth or decay characteristics.
- Students will develop an understanding of the behavior of exponential and logarithmic data.
- Students will be able to identify and model relationships among variables within datasets.
- Students will be able to visualize, label, plot, recognize patterns, and model relationships using normal, log-log, and semi-log graph paper.

UG Semester Topic-wise Time Plan
Bridge Course (Solving Large-Scale Geographical Problems with Mathematical Transformations)

Topics	Hours allotted	Topics (as per curriculum)	Teaching method	Learning outcome (output)	Assessment
Conceptual Foundation of Logarithm and Scaling	45 minutes	I. Conceptual Foundation of Logarithm II. Mathematical Behavior and Relationships	Learning through problem-solving, Technology based learning, Lecture	Explain the mathematical foundations and practical applications of logarithms—particularly natural logarithms and Euler's number—in scaling, measurement, and interpretation of scientific and geographical phenomena, and apply	MCQ Quiz, Problem Solving Task such as Case studies and real-life interpretations.

				these concepts to analyze and manage spatial datasets exhibiting exponential growth or decay.	
Understanding Scaling and Visualization (On Graph)	45 minutes	IV. Understanding Scaling and Visualization (On Graph) V. Application in Geography VI. Consolidation & Assignment Day 2	Learning through problem-solving Group-Learning and Teaching Individual learning/self-study Peer teaching	Develop mathematical models to represent relationships among variables in complex datasets using logarithmic and exponential functions. Apply graphing techniques such as normal, semi-log, and log-log plotting to visualize data, recognize patterns, and communicate findings effectively.	Asking a student to plot data, construct a graph, and interpret it