X(lstSm.)-Statistics-G/(GE/CC-1)/CBCS

2022

STATISTICS - GENERAL

Paper: GE/CC-1

(Descriptive Statistics)

Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five of the following :
(a) Name two different diagrams used in representing an attribute.
(b) Distinguish between discrete variable and continuous variable.
(c) In case of a frequency distribution with open-end class interval suggest measures of central tendency and dispersion.
(d) Prove or disprove : $\sum_{i=1}^{50}|i-25.1|=\sum_{i=1}^{50}|i-25.2|$ by suitable statistical argument.
(e) Find the standard deviation of two real numbers ' a ' and ' b '.
(f) If $r_{12}=0.4, r_{13}=r_{23}=0.5$, find the value of multiple correlation coefficient $r_{1.23}$.
(g) If the two regression lines are $2 x+y=4$ and $5 x+8 y=7$, find the value of the correlation coefficient $r_{x y}$ and the ratio of variances of x and y.
(h) Write down the formula of Spearman's rank correlation coefficient. What are the limits in which Spearman's rank correlation coefficient lies?
2. Answer any two of the following :
(a) Define Histogram and describe how it is constructed. Mention one use of it.
(b) For a set of n observations show that the mean deviation about mean cannot exceed the standard deviation.

5
(c) Show that the central moments are invariant under the change of origin, but not under the change of scale.
3. Answer any three of the following :
(a) Prove that, for ' n ' positive values $x_{1}, x_{2}, \ldots x_{n}$, A.M. \geq H.M. In particular if $x_{\mathrm{i}}=r^{\mathrm{i}-1}, r>1, i=1,2, \ldots, \mathrm{n}$ then show that A.M., G.M. and H.M. are in a geometric progression.

$X(1$ st Sm. $)$-Statistics-G/(GE/CC-1)/CBCS

(2)
(b) What do you mean by the term 'regression'? Two variables x and y are known to be related to each other by the relation $y=a b^{x}$. How is the theory of least squares to be used to estimate the constants a and b on the basis of n pairs of observations $\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$?
$2+8$
(c) Describe different types of kurtosis of a frequency distribution. Show that $b_{2}>b_{1}+1$, where b_{1} and b_{2} are moment measures of skewness and kurtosis respectively.
$3+7$
(d) Let, there be two groups of ' n_{1} ' and ' n_{2} ' values with means \bar{x}_{1}, \bar{x}_{2} and variances $s_{1}{ }^{2}, s_{2}{ }^{2}$ respectively, then, show that, the combined variance s^{2} of $\left(n_{1}+n_{2}\right)$ values can be expressed as :

$$
s^{2}=\frac{n_{1} s_{1}^{2}+n_{2} s_{2}^{2}}{n_{1}+n_{2}}+\frac{n_{1} n_{2}}{\left(n_{1}+n_{2}\right)^{2}}\left(\bar{x}_{1}-\bar{x}_{2}\right)^{2}
$$

Hence, show that when the group means are equal s^{2} lies between $s_{1}{ }^{2}$ and $s_{2}{ }^{2}$.
(e) What does correlation coefficient r measure? With an example show that correlation zero does not necessarily imply that the variables are independent. Define partial correlation coefficient and find its range of variation.

